
yt _ -j

m

MITT Writer and MITT Writer

Advanced Development: Developing
Authoring and Training Systems for

Complex Technical Domains

J _ r,.:

_..j -j

_- _2 -' C

F- j "

t :

Final Report

Bradley J. Wiederholt

Elica J. Browning

Jeffrey E. Norton
William B. Johnson

Galaxy Scientific Corporation

April 1991

Cooperative Agreement NCC 9-16

Research Activity No. ET.21 & ET.22

NASA Johnson Space Center

Mission Operations Directorate

Space Station Training Office

© ©

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

TECHNICAL REPORT

The RICIS Concept

IIIIIIIIIII

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center (JSC) and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and acadcmia.

RICIS combines resources of UHCLand its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UIICL, the mission is being

implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RIClS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UtICL

has entered into a special partnership with Texas A&M University to help

oversee RICIS research and education programs, while other research

organizations are involved via the "gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computlng and informa-

tion sciences. RICIS, worklngJoinfly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical results into the goads of UHCL, NASA/JSC and industry.

.--d

MITT Writer and MITT Writer

Advanced Development: Developing
Authoring and Training Systems for

Complex Technical Domains

Final Report

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Galaxy Scientific Corporation. Dr. Glenn

B. Freedman served as RICIS research coordinator.

Funding has been provided by the Mission Operations Directorate,

NASA/JSC through Cooperative Agreement NCC 9-16 between the NASA

Johnson Space Center and the University of Houston-Clear Lake. The NASA

technical monitor for this activity was Barbara N. Pearson, of the

Systems/Elements Office, Space Station Training Office, Mission Operations
Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors

and should not be interpreted as representative of the official policies, either

express or implied, of NASA or the United States Government.

MITT Writer and

MITT Writer Advanced Development:

Developing Authoring and Training Systems
for Complex Technical Domains

Final Technical Report

Bradley J. Wiederholt
Elica J. Browning
Jeffrey E. Norton

William B. Johnson

Galaxy Scientific Corporation
2310 Parldake Drive

Suite 300

Atlanta, Georgia 30345-2904

Prepared for:

Armstrong Laboratory Human Resources Directorate
Training Systems Division

Brooks Air Force Base, Texas 78235-5601

RICIS Research Activity Number E.T. 21
Subcontract Number 58

and

RICIS Research Activity Number E.T. 22
Subcontract Number 59

April 1991

Executive Summary

MITT Writer is a software system for developing computer-based training for complex technical

domains. A training system produced by MITt Writer allows a student to learn and practice

troubleshooting and diagnostic skills.

The MITt (Microcomputer Intelligence for Technical Training) architecture is a reasonable

approach to simulation-based diagnostic training. MITr delivers training on available computing

equipment, delivers challenging training and simulation scenarios, and has economical

development and maintenance costs.

A 15-month effort was undertaken in which the MITI" Writer system was developed. A workshop

was also conducted to train instructors how to use MITT Writer. Earlier versions were used to

develop an Intelligent Tutoring System for troubleshooting the Minuteman Missile Message

Processing System.

ii

Acknowledgments

The work described was supported by the Training Systems Division of Armstrong Laboratory

Human Resources Directorate, under RICIS Research Activity Number E.T. 21, Subcontract

Number 58 and RICIS Research Activity Number E.T. 22, Subcontract Number 59. Mr. Jim

Fleming served as scientific monitor for the projects. Major Jim Parlette, Capt. Kevin Glass,

Capt. Mike Slaven, and Mr. Wes Regian of the Human Resources Directorate monitored and

supported the development of the MYI'I" and Mrlq' Writer systems.

Mr. Ernesto Podagrosi, MSgt. Wayne Griffin, and MSgt. Rick Olsen of Chanute AFB were

insturmental in the development and review of the Minuteman Missile Message Processing tutor.

Our colleagues Leonard Utsman, William Pitts, and Leslie Neste assisted in the design,

development, and evaluation of the MrIT and MITT Writer systems.

iii

Table of Contents

Executive Summary .. ii

°°.

Acknowledgments ... m

Table of Contents ... iv

Figures and Tables ... vi

1.0 Introduction ... 1

1.1 Overview .. 1

1.2 Report Organization 3

2.0 Foundations of MITT Writer 4

2.1 Early Research 4

2.2 The Next Step - MITT (Microcomputer Intelligence for

Technical Training) 5

3.0 Goals for MITT and MITT Writer 9

3.1 Candidate Domains for MITT Tutors 10

3.2 MITT Writer Features 10

3.3 System Requirements 13

4.0 Primary MITT Writer Development 14

4.1 MITT Writer Features 14

4.1.1 M1Tr Writer Objects 14

4.1.2 Translation of Objects into Tutors 15

4.1.3 Editors .. 15

4.1.4 User-Interface 16

4.1.5 Interactive Display Editor 18

4.1.6 M1TI" Writer Advisor 19

iv

4.2

4.1.7 Help Library 20

4.1.8 Error and Consistency Checking 20

4.1.9 Database Support 22

The MITT Writer Authoring Process 22

4.2.1 Creating the Base Tutor 23

4.2.2 Demonstration and Modification 27

4.2.3 Delivery 27

MITT Writer Internal Architecture 28

Development of MITT Writer 33

5.0 MITT

5.1

5.2

Writer Advanced Development 35

Minuteman Missile Message Processing Tutor 35

5.I.1 Fuel Cellvs.Message Processing 36

5.1.2 MITr Writerand MITT 39

MITT Writer Workshop 39

5.2.1 Workshop Format 40

5.2.2 EvaluationResults 40

6.0 Summary and Areas for Future Development 43

6. I Summary .. 43

6.2 Areas for Future Development 44

References .. 46

V

Figures and Tables

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Table 1.

Table 2.

Table 3.

Table 4.

MITT Writer and MITT 2

Sample Portion of Functional Flow Diagram for a Car Engine 5

Example Display from the MITI" Fuel Cell Tutor Prototype 6

Creating MrIT Tutors From Database Objects 15

System Parts Editor 16

Database Menu .. 17

A Stack of Object Editor Windows 17

The Interactive Display Editor 18

Data Field Editor 19

Sample Suggestion From MITT Writer Advisor 20

Sample Display from the M1TI" Writer Help Library 21

Sample Output from Consistency Check 22

Overview of the MITr Writer Authoring Process 23

MITI" Writer Internal Architecture 28

Missile Tutor Overview 35

Missile Tutor Display 38

Average Ratings on Major Categories 41

MITT Training System Scores - Overall 41

MrIT Writer Ratings - Overall 42

Workshop Ratings 43

Evolution of MITI" Functionality 7

MrIT Functionality Terms 8

Characteristics of Candidate Domains for MYI'F Tutors 11

MITT Writer Features 12

vi

1.0 Introduction

1.1 Overview

MITT Writer is a software system for developing computer-based training for complex technical

domains. A training system produced by MrvI" Writer allows a student to learn and practice

troubleshooting and diagnostic skills. In the training system, a problem is presented to a student in

which a domain component has failed. The student is then presented with a simulation of the

system. The student is given initial information about the problem, and then proceeds to gather

additional information by viewing gauges and displays, testing components, obtaining expert

procedural and functional advice and, eventually, locating the failed component.

The training system produced by MI'I'F Writer focuses on simulation-oriented training. The

training scenario relies on the simulation of gauges and instrumentation to provide the student with

troubleshooting practice. During a problem session, the student receives advice that is both

functional (common sense advice based on system connectivity) and procedural (based on technical

orders). The student practices these troubleshooting and diagnosis techniques during several

problem sessions.

Like all previous MITT (Microcomputer Intelligence for Technical Training) projects (Johnson et

al., 1985; Johnson et al., 1988; Johnson et al., 1989), MI'I'F Writer was designed to run on

conventional, readily available microcomputers. Using MITT Writer, instructors and domain

experts with minimal computer experience can design an Intelligent Tutoring System (ITS)l. The

ITS is made up of a system simulation, a functional knowledge base, a procedural knowledge

base, a simulation interface, and instructional guidance. These components are used by MFlq" (a

companion software program) to provide students with the new technical training (see Figure 1).

This report describes the 15-month effort in which the MITT Writer and MITT software programs

were developed. During this period, a workshop was also conducted to train instructors to use

MrYl" Writer. This report also describes earlier versions of MI'rq" that were used to develop an

ITS for troubleshooting the Minuteman Missile Message Processing System. These activities were

1 General information on Intelligent Tutoring Systems can be found in (Johnson, 1988b; Massey et
al, 1988; Polson & Richardson, 1988). Detailed information on the particular ITS architecture employed by MITT
is given in (Johnson, et al, 1988).

1

conducted under two separate, but highly interrelated, projects: MITT Writer and MITT Writer

Advanced Development.

Instructors /

Domain Experts

MITT
Writer

Students

Figure 1. MITT Writer and MITT.

In the first project, MITT Writer, the MITT Writer authoring system was developed and

demonstrated. With the authoring system, an Air Force instructor or domain expert develops

Intelligent Tutoring Systems for training students to troubleshoot problems in complex technical

domains. MITI" Writer contains many features to support the instructor, including a graphical

interface, a large help library, expert advice, and extensive error checking.

In the affiliate project, MITT Writer Advanced Development, the evolving training tools were used

to develop a turn-key ITS for the Air Force. In addition, a workshop was conducted to teach

prospective Air Force instructors to use MITT Writer. Their initial reaction to its operation was

also assessed (Browning, et al., 1991).

Both of these projects proceeded in parallel. Early versions of the generic MITT delivery system

were used to support the development and delivery of the turn-key ITS. Likewise, the subsequent

design and interface modifications to the MITT Writer authoring system were based on the

2

reactions and opinions of the workshop participants. Internal use of MITT Writer in developing

the Missile Message Processing Tutor also affected system modifications.

1.2 Report Organization

The remainder of this report describes the activities and results of the MITT Writer and MITT

Writer Advanced Development projects. Section 2 describes previous work conducted by the

authors that contributed to the current projects. Section 3 briefly presents the technical goals for

the projects, and the technical approach to meeting these goals. Sections 4 and 5 describe the key

issues of the MITT Writer and MITT Writer Advanced Development projects. Section 6

summarizes the project results and offers suggestions for future research. This report does not

provide detailed operation directions for either MITT Writer or MITT. A companion report, the

MITT Writer User's Reference Manual (Wiederholt, 1991), provides this information.

3

2.0 Foundations of MITT Writer

2.1 Early Research

Previous efforts on part of the research team (Johnson, 1981; Johnson & Rouse, 1981; Johnson,

1987) consisted of conducting basic troubleshooting skills research and applying this new

knowledge to the development of Intelligent Tutoring Systems for a wide variety of technical

domains. Early research (1979-1982) focused on understanding generic troubleshooting. The

first of these studies was Troubleshooting by Application of Structural Knowledge (TASK).

TASK (Rouse, 1979) provided a variety of context-free simulations that enhanced the

understanding of basic problem-solving. The context-free training research permitted laboratory

experimentation of such variables as problem complexity, type of feedback, computer aiding, and

forced pacing. The research indicated that problem-solving simulations had significant potential

for "real-world" diagnostic training. This early research prompted context-specific training

simulations.

Framework for Aiding and Understanding of Logical Troubleshooting (FAULT) added domain

context to the problem solving sessions, and allowed a student to troubleshoot a network of pans

by checking instruments and making observations (Johnson 1981; Rouse & Hunt, 1984). The

FAULT simulation also introduced the concept of the functional flow diagram (FFD).

The FFD taught the student to understand the concept of functional connectivity. The concept

views a system as interconnected pans with "function" flowing through the system. For a pan to

provide proper function, all pans that connect to it and the part itself must be fully operational.

This concept promotes a generic approach to all system diagnosis. A sample portion of a FFD for

a car engine is given in Figure 2.

The basic laboratory research described above was transferred to the field with the Army SB-3614

tactical switchboard training system (Johnson and Fath, 1983 & 1984). SB-3614 examined the

feasibility of using off-the-shelf microcomputers for training in the Army school environment.

This effort found that low-fidelity training simulation (dictated by hardware limitations) was

acceptable, but could be enhanced by practice on the real equipment (Johnson and Fath, 1984).

The SB-3614 software was adopted into the Army program of instruction and was used from 1984

until 1988, when the SB-3614 equipment was retired from the Army inventory.

4

7

J Starter

Solenoid

10 12 15 0

I'ILJ Starter U FlywheelM°t°r I I Ring Gear _-'_JCrankshaft pI ___a_l... _ Camshaft],I
8

I IgnitionComputer i_._13 1_ 19 21Distributor PlugWires H Spark Plugs J

Figure 2. Sample Portion of Functional Flow Diagram for a Car Engine.

The concepts of functional flow and simulation-oriented training from FAULT were later applied to

the Diesel Generator Simulator (DGSIM) (Johnson et al., 1985; Johnson et al., 1986). DGSIM

provided improved graphics and simulation scenarios, thus enabling the student to 'visit' various

information sources, rather than relying on the single model of functional flow. DGSIM also

added the ability to generate advice to the student based upon the functional flow of the system.

The DGSIM research was significant because of the extensive post-training evaluation that was

conducted. The evaluation compared the use of computer simulation to traditional u'aining. The

results showed that the simulation-based training is significantly better, particularly with respect to

long-term retention (Maddox et al., 1986).

2.2 The Next Step - MITT (Microcomputer Intelligence for Technical Training)

Work on initial versions of Microcomputer Intelligence for Technical Training (MITt) began in

1987 (Johnson et al., 1988). The first MITt prototype was a proof-of-concept software program

designed to show than an effective ITS could be developed inexpensively on common and readily

available microcomputers. The system was based on the functionality provided by DGSIM, and

provided additional enhancements to both the simulation and tutoring capabilities. The domain for

the prototype was the Electrical Power System/Fuel Cell for the Space Shuttle. Additional features

provided by this prototype included static data representation, procedural advice, EGA 640x200

graphics, and unsolicited instructor feedback. Figure 3 shows an example display from the

prototype.

5

Figure 3. Example Display from theMITT Fuel CellTutor Prototype.

A subsequent MITr project enhanced the prototype to become the MITT Fuel Cell Tutor. The Fuel

Cell Tutor included additional problem scenarios, dynamic data representation, an animated system

schematic and overall performance enhancements (Johnson et al., 1989; Neste 1989). The Fuel

Cell Tutor was evaluated at NASA Johnson Space Center for training of astronauts and flight

controllers (Johnson, et al., 1988).

As an overview, Table 1 (from Norton, et al., 1990) offers a brief look at the progression of

functionality provided by M1Tr over the past 4 years. Table 2 provides a glossary for the

terminology used in Table 1.

Also during the last development round of the Mill" Fuel Cell Tutor, a specification for an

authoring system was generated (Johnson et al., 1989). An authoring system would allow

instructors or domain experts with minimal computer experience to develop their own ITSs. These

new training systems would be based on the MITT architecture and, like MITT, would be able to

run on standard Air Force microcomputers. Subsequent sections describe the technical hurdles that

were overcome to develop such an authoring system.

6

Functional
Advice

Simulation

Animated
Flow

Procedural

Advice

Graphics

Time

Instructor

Feedback

Subsystems

Memory

File-Based

Table

DGSIM

Includes time,

most powerful,
& best test

System is a

snapshot. Data
values constant

None

None

CGA 4-color

Tracks time

required to

perform tests

Limited to FFD

advice

Multiple

One executable

No

I. Evolution of MITT Functionality.

MITT Proto Fuel Cell Missile

Tutor

Includes only Same Same
best test

Same Adds simulation Same

dynamics

Adds links

between

mouseable

regions & tests

None

MITT Core

Salne

Used CLIPS

EGA 640x200.

Uses custom

decompression
routines

No longer uacks

time

Same

Same Same Same

Adds animation Same

Expands student
model

Uses 3rd party

PCX package
EGA 640x350

Sm'ne

Add unsolicited

feedback

(beyond FFD

advice)

Sa_rle

Four separate
executables

(Main, Into.

Sire. CLIPS)

No

Sm'ne

Refines

decompression
routines

Sa/lle

Same

Sm'ne

Two executables

Info/Sim and

Clips

Yes

Same

Single

Same

No

Same

Same

San2e

Same

SaJTle

San2e

Overlays yield

one executable

Yes

7

Table 2. MITI" Functionality Terms.

Term

Functional
Advice

Simulation

Animated
Flow

Procedural
Advice

Graphics

Time

Instructor
"Feedback

Subsystems

Memory

File-Based

Definition

The advice that is given to the student is based on the functional flow diagram
(FFD). Functional advice knows only that part A is connected to part B, etc.

No domain-specific advice can be given here.

The term simulation is used here to refer to how the data values used by the

system are updated. These data values can be g.enerated in a variety of ways,
ranging from the use of static data representations to the use of full-fidelity
simulation.

The function of the system flows from one part to the next. The flow from one

part to another part can be represented with some simple animation on the screen.

Many technical training domains enlist specific troubleshooting procedures. The
procedural advisor captures this procedural knowledge in the form of rules.

The interface to MI'I_ uses a large number of graphics. As the system has
evolved, the resolution of the pictures and the manner in which these graphics

are presented has changed.

The amount of simulated time required to perform a test or to replace a part.

The unsolicited feedback is similar to the feedback that would be given by a
human instructor looking over the student's shoulder.

The size of the domain depends on two parameters: 1) the size of the executable
system, and 2) the size of the domain-specific files. Sometimes the domain
needs to be subdivided into several smaller systems to fit into available memory.

Each of these systems are referred to as "subsystems."

The need for memory conservation is essential because of the 640 Kilobyte
memory restriction in DOS. Several tactics were used to conserve memory
during the evolution of MrI'T.

In preparation for MITT Writer, all domain-specific information was removed
from the code and placed into data files. In Table 1, "yes" indicates that this
operation was performed, "no" indicates that the code still contained domain-

specific references.

8

3.0 Goals for MITT and MITT Writer

The initial acceptance of the Fuel Cell and Missile tutors suggested that the MITT tutor architecture

is a reasonable alternative for simulation-based diagnostic training. For the MI'I'F tutoring

philosophy to be widely accepted into DoD and other government and/or industry training

programs, there are three primary criteria that must be met:

The training technology must deliver training on available computing equipment,

The training technology must deliver challenging training and simulation scenarios,

The training technology must have reasonable development and maintenance costs.

If MITT tutors are going to have wide-spread acceptance, they must operate on computer systems

that are already installed in training installations. In the DoD environment, as well as many other

training environments, the common computer is a 80286-based DOS machine with, at most, 640

Kilobytes of RAM. EGA color displays, combined with keyboard and mouse input, are also quite

common. The MITr series of training tools was designed to operate within these constraints.

MI'IT tutors must be able to provide challenging, simulation-based problems to students. The

architecture used for the MrrT tutors is simulation-based, permitting the student to engage in most

of the diagnostic actions that are available with real equipment. This design must be available for

any new MITr tutor.

The development and maintenance of a MITT tutor must be affordable. This goal can be achieved

with the creation of a development environment that can be used by government training

developers and subject matter experts. Technical instructors are likely users of such development

tools (Johnson, 1988a). The MrI'I" Writer authoring environment must guide technical personnel

to organize their knowledge in a format that is aligned with the MI'IT architecture. The system

must be relatively easy to use. It must guide the developer, provide help and advice with the

development, and check the newly created system for completeness.

As introduced in Section 1.0, the MrIT training environment (initially proposed in Johnson, et al.,

1989) consists of two separate software programs: MITI" Writer and MITr. MITT Writer is a

development environment used by instructors and subject matter experts to produce a description

of training. In contrast, MI'IT delivers the instruction that was developed using MITT Writer.

9

The goal of MITT Writer is to support instructors and subject matter experts, rather than

programmers, in developing MITT tutors. MITr Writer should provide enhanced ITS authoring

capabilities. MITT Writer should allow the author to rapidly develop and maintain MITT tutors.

In contrast, the goal of MITr is to deliver training to students using ITS technology. _ should

use data produced by MITr Writer to present problems, monitor student performance, compare

student actions to expert actions, and present suitable feedback to the student. MITT should work

with any set of descrip6on f'des produced by MITT Writer.

The following sections outline the technical design environment (both goals and constraints) for the

implementation of MITT Writer and the MITT training delivery software.

3.1 Candidate Domains for MITT Tutors

MITT Writer was designed to build MITT tutors for technical domains that exhibit the

characteristics shown in Table 3.

3.2 MITT Writer Features

MITI" Writer was designed with a variety of features to aid an instructor or domain expert in

developing a new MITT Tutor. Most of these features were derived by analyzing the information

needs of the MITT Writer user and the data requirements of the MITT software. Table 4 presents a

list of these features. Each of these features will be discussed in more detail in Section 4.0.

10

Table 3. Characteristics of Candidate Domains for MI'I'F Tutors.

Complex Technical System - MITT can address a variety of interconnected

components within a large system.

System has a Variety of Instrumentation - MITT uses instruments as a basis

for all testing. The more instruments that are available, the better the

simulation can represent the real system.

System Has Multiple Test Points - The MI'I'I" functional model splits the

system by obtaining information at many points in the technical system.

Multiple, real-world test points enhance the functional model.

Students Must Practice to be Proficient - MI'VI" permits continuing practice.

MI'VI" problem sessions typically tend to be low in time (e.g., around 15

minutes per problem), enhancing the accessibility by the students.

Students Need Procedural Information - The MI'I'I" procedural advisor is

constructed from system diagnostic procedures. If such procedures exist, and

are robust, then the Mrvr procedural expert will be correspondingly

powerful.

Students Cannot Practice on Real Equipment - If the real equipment is

simply not available for safe, effective, and efficient practice, then it is

worthwhile to invest in the development of a MITT Tutor.

Student's Job Has Diagnostic Tasks - If the job has a large troubleshooting

component, the trainee must practice to learn and to sustain diagnostic

knowledge and skill. If the job does not involve troubleshooting, MITT may

not be the best training approach. If the job has low amounts of

troubleshooting, but such troubleshooting is critical, then MITT is also

appropriate.

11

Table 4. MITI" WriterFeatures.

MITT Writer provides an editor for each particular training item, such as

system parts, system sensors, simulation displays, diagnostic

procedures, and instructor guidance.

MITI" Writer capitalizes on graphical user-interface technology using a

windowed, menu-based, mouse-driven interface.

MITT Writer provides tools for graphical screen composition and layout.

MITT Writer contains on-line intelligent advice on how to use MITI" Writer.

MITI" Writer contains an extensive help library, including context-specific

help.

MITI" Writer provides on-line error checking for data correctness,

completeness, and consistency.

MITI" Writer saves work-in-progress and completed work in databases,

allowing authors to continue their work over several sessions.

MYI'I" Writer creates new MITI" tutors by translating an authored database

into training description flies.

12

3.3 System Requirements

One important goal of all previousMITI" projects was to produce software that operates on

standard, and commonly available, computing environments. MITT Writer was also designed

with this goal in mind. MITT Writer also capitalizes on existing graphics tools to support its ITS

authoring functions.

MITF Writer requires an IBM PC/AT or higher DOS-based platform to operate. Noticeable

performance increases can be observed when running MFFF Writer on 80386-class machines.

RAM requirements are set at 6,0,0K or higher, though 1 Megabyte of RAM is recommended. 640K

of the total system memory must be conventional memory, and the remainder of the memory must

conform to either the Extended Memory Manager (XMS) or Expanded Memory Manager (EMS)

specifications. Noticeable improvements can be observed when the memory conforms to the EMS

specifications. On AT-class machines, this often requires the addition of EMS-specific memory

expansion boards, though some software packages exists that can map conventional XMS memory

to EMS specifications. On 386-class machines, software (such as QEMM by Quarterdeck) is

widely available to support the EMS standard.

A Microsoft Mouse (or compatible) is highly recommended, but not required for using the basic

MITT Writer editors. However, a mouse is required for the Interactive Display Editor. MITT

Writer operates in standard 16-color EGA video mode. At least 3 Megabytes of hard disk space

should be dedicated to MITF Writer to ensure optimal performance.

Mrt'F Writer was not designed to support bit-mapped editing of graphics. This function is left to

the numerous commercial and public domain packages that are available for producing .PCX

format image files. Any pictures that are produced for use in M1TF Writer must be in standard

EGA format (i.e., 16-color, 640x350 resolution).

13

4.0 Primary MITT Writer Development

As mentioned earlier, MITt Writer was designed with a variety of features to aid an instructor or

domain expert in developing a new MITF Tutor. This section discusses these features, focuses on

the MITr Writer authoring process, examines the internal architecture of MFFF Writer, and

discusses project development issues.

4.1 MITT Writer Features

4.1.1 MITT Writer Objects

Writer allows authors to develop training systems for complex technical domains. Authors

use MFFF Writer to create, modify, and store objects related to the technical domain. In MITr

Writer, major object classes are:

• System Components, including Parts and Sensors

• System Alarms and Faults

• Problems

• Interface Displays, including Information and Simulation Displays

• System Procedures

• Instructor Guidance

Taken as a whole, these object classes represent the Simulation, Procedural, Student Modeling,

Instructional, and Interface components of a MITT tutor.

Within each of these major object types are sub-objects. For example, a Simulation Display object

would have sub-objects describing controls, display elements, and active screen regions. A

System Procedure would have sub-objects pertaining to the steps of the procedures and advice

given during that step.

In addition to allowing the author to manipulate and store objects, M1TT Writer also allows the

author to modify relationships between these objects. For example, system parts are related to one

another based on their functional flow, and alarms and faults are related to particular problems.

14

4.1.2 Translation of Objects into Tutors

As shown in Figure 4, MITT Writer creates new MITT tutors by translating from MITI" Writer

objects into ITS (Intelligent Tutoring System) files. These ITS files are used by MITT to present

the desired training to the student.

MITT Writer
Translation

MITT Writer

Objects

Figure 4.

Instructor

Guidance

Student

Modeling

Procedure

Base

"! Iv MITT

MITT ITS Flies

Creating MITT Tutors From Database Objects.

4.1.3 Editors

MI'Iq" Writer provides an editor for each particular training object. For example, the System Parts

editor (see Figure 5) allows the author to modify the part's number, name, general description and

test descriptions, functional feedback, and relationship to other parts in the system. An editor

allows the author to edit both the object and its relationships.

15

Figure 5. SystemPartsEditor.

4.1.4 User-Interface

MITT Writer capitalizes on graphical user-interface technology by using a windowed, menu-based,

mouse-driven interface. This direct-manipulation style interface supports the data entry, editing,

and object management tasks performed by the author. Menus provide the author with the ability

to quickly select commands and tools. Figure 6 shows an example menu for all operations related

to using databases. Windows, on the other hand, logically group the author's work on the

display. All work related to a particular object is located in a window for that object. Figure 7

shows a stack of windows for a variety of editors.

1 6 ORIGINAL PAGE IS

OF POOR QUALITY

Figure 6. Database Menu.

Figu re 7. A Stack of Object Editor Windows.

17
ORIGINAL
OF POOR

PAGE IS

QUALITY

4.1.5 Interactive Display Editor

MITT Writer provides tools for graphical screen composition and layout. For editing the

Introduction Screen, Credits Screen, Information Screens, and Simulation Screens, MITT Writer

provides the Interactive Display Editor (see Figure 8). MITT Writer does not support bit-mapped

editing of graphics. As stated earlier, this function is left to commercial packages that can produce

the necessary .PCX format image files (in EGA 16-.color, 640x350 resolution).

Figure 8. The Interactive Display Editor.

MrI'F Writer does, however, support the editing and manipulation of simulation- and instructional-

specific display sub-objects, such as data fields, text strings, "pop-up messages," and controls.

Once authors have created these display sub-objects, they can then attach them to the underlying

simulation. For example, by relating a display sub-object to a system sensor object, the display

sub-object inherits the value of the sensor, subsequently displaying the sensor's value to the

student. (By itself, a sensor object only contains the value of the sensor. It has no ability to show

this value to the student.) In the case of data fields (see Figure 9), a data field will display the

value of a sensor in numeric format as the simulation runs. In the ease of status indicators, the

status indicator will use the sensor value to determine a status messages to be shown to the student

18

4.1.6 MITT WriterAdvisor

Figure 9. Data Field Editor.

MITI" Writer contains on-line, intelligent advice to guide new authors on the MITI" development

methodology. This methodology has been used over the past 5 years to develop new MITI" tutors.

The advisor was designed to minimize the amount of off-line instruction to learn the complex

authoring process.

A backward-chaining expert system was used to capture this methodology. When an author asks

for advice, the Advisor will review the current database, looking for incomplete work. If

necessary, the Advisor will query the author for additional information or confh'mation. After the

review, the Advisor suggests the next action the author should perform, or the next object the

author should create (see Figure 10).

19

Figure 10. Sample Suggestion From MI'Iq" Writer Advisor.

4.1.7 Help Library

MITT Writer contains an extensive help library, including context-specific help (scc Figure 11). At

any point during a MI'Iq" Writer session, context-specific help is available to give the author

information on the object currently being edited. The help library is arranged in a hierarchical

fashion to support browsing by the author. At any entry in the library, the author is able to request

more detail on the particular topic, or is able to get a more general level of help. The library holds

most of the material contained in the MITT Writer User's Manual. In fact, due to the hierarchical

structure of the library, the user's manual was automatically generated from the help library.

4. 1.8 Error and Consistency Checking

MITF Writer provides on-line error checking for data correctness, completeness, and consistency.

To ensure data corrccmess, validation is performed at the object level. Data that is invalid will be

rejected and offered to the author for correction. To support completeness of the training system,

the MITT Writer Advisor also checks the author's work.

2O

Figure 11. Sample Display from the MITT Writer Help Library.

To assure consistency between training system objects, MITr Writer provides a Consistency

Check tool (see Figure 12). Inconsistencies occur in the database when objects reference missing

objects or relationships. For example, while creating a new problem, the author might reference a

procedure that has not yet been defined. The author intended to come back later and create the

procedure. However, ff the author forgets to create this procedure, then this 'dangling reference'

will cause problems when the student attempts to run this problem. The Consistency Check tool

will catch this error and present it to the author. (Note: In MITt Writer, the storage of this

inconsistent reference to a procedure is not considered to be invalid. MITF Writer authors are

allowed to complete their work and carry out their intentions, even though inconsistencies can

occur as a result).

MITt Writercan not use an inconsistentdatabasetocreatea MITT tutor.Before creatinga tutor,

MITr Writerchecks thestateof thedatabase.Ifinconsistenciesarcfound,theauthorisallowed to

correcttheseerrorsbeforeproceeding.

21

Figure 12. Sample Output from Consistency Check.

4.1.9 Database Support

MITT Writer authors save their work in databases, allowing them to continue development over

several sessions. The development of a MI'I'T tutor is a task requiring weeks, or even months, to

complete. To support the author over these multiple work sessions, M/TT Writer stores all work

in databases which can be retrieved and modified at a later time. MITT Writer maintains

information about the state of the database in a special database object. Example state information

includes date and time of last modification, an indication of the results of the last consistency

check, and database version number. MITT Writer uses this state information to prevent the author

from closing a database without first saving changes, to prevent the author from creating tutors

from incomplete databases, and to maintain database compatibility with future MFFI' Writer

releases.

4.2 The MITT Writer Authoring Process

The M/Tr Writer author develops a new MITT tutor by f'trst creating a base tutor, next testing this

base tutor with MITT, and then successively refining the tutor by making additional modifications.

In the past, MI'IT tutors were mated by quickly developing the base tutor, demonstrating the tutor

22

to potential instructors and students, and _ying the system based on their feedback. There

were often multiple demonstration and feedback cycles during the development of a tutor. The

development time for the base tutor is roughly equal to the time spent in modifying and retesting

the tutor based on demonstration and feedback cycles. Figure 13 illustrates this development

process.

Develop Base
Tutor with

MITT Writer

Document

&De_ver

Figure 13. Overview of the MHT Writer Authoring Process.

4.2.1 Creating the Base Tutor

To create the base tutor, the author must pass through 5 major phases: 1) define functional

characteristics, 2) create base simulation, 3) create the simulation interface, 4) develop instructional

and procedural guidance, and 5) test and modify the system. Each of these phases is described

below.

23

Define Functional Characteristics

To define the functional characteristics for the tutor, the author must first define all components

(i.e., parts and sensors) for the system. This process is greatly enhanced by first sketching a

rough draft of the system functional flow diagram. The functional flow is simply a graphic

representation of the system's parts and sensors that shows their functional dependencies.

For each part, the author describes the part, describes how the part can be tested, and relates this

part to other parts in the system. For each sensor, the author must describe the sensor, describe

how the sensor behaves under normal conditions, describe how the sensor can be tested, and

indicate the part or functional relationship that the sensor detects.

This collection of parts, sensors, relationships, and detection points serves to teach the student the

basic functional components and relationships of the system. The student is able to obtain

information on the components, how these components are tested in the 'real-world,' and how

these components are related to one another. The functional relationships also serve as a basis for

the functional advisor in MITT.

Create Base Simulation

To create the base simulation, the author must define how the system acts under both normal and

failure conditions. Problems are based on the failure of a component in the system. When a

component fails, the system behaves differently than it would behave under normal conditions.

Sensor values change, tests on components reveal abnormalities, and faults occur in the system.

MrI'I" depends on a surface-level simulation of the system. That is, MITT simulates the

observable outputs of the system. This method of simulation is adequate and appropriate for the

training that MI'IT presents.

To create the base simulation, the author begins by defining a problem to be presented to the

student. The author defines the component that will fall, the procedure that will help the student

diagnose the problem, and how the values of sensors react under the failure conditions. The

author defines new sensor values and the time in the simulation that sensors are set to these new

values.

24

The author also defines faults and alarms that occur in the simulation. Faults occur when a

sensor's value exceeds a predetermined range, or when a given period of time has elapsed. When

a fault occurs, an associated audible and/or visual alarm is activated. These alarms are created by

the author. (In MITT, faults do not cause components to fail, though this is a suitable

enhancement for future versions of M1TI" and M1Tr Writer.)

Create Simulation Interface

In MITT, the student solves problems by performing tests, reading gauges and displays, and

performing procedures. The simulation interface is a series of displays that allow the student to

perform these actions. The simulation interface is made up of individual displays, display sub-

objects, and the relationship of these objects to the base simulation described above.

To create a simulation display, the author must first create the background graphic file for this

display. This is accomplished using an external graphics package capable of producing .PCX

format graphics files. The author then uses the Interactive Display Editor to place, or overlay,

MI'I'I' Writer display objects on this graphic.

MITT Writer supports several type of display objects. _ objects allow the author to show

messages to students when they activate an area of the display. _¢.2K.._Zill_ allow the author to

add text to the display. _ allow the author to display the value of sensors in a numeric

format. Status Indicator_ allow the author to present a text message based on the value of a sensor.

allow the author to create simple animation of flow on the display. _ allow

the author to display faults that have occurred in the system. _ objects allow the author

to display system time to the student. _ objects allow the author to display small

graphics images based on the value of the sensor. Controls allow the author to simulate toggle

switches, buttons, dials, etc., thus permitting the author to hide and show display objects. Show

allow the author to hide information until the student activates an area on the display.

Links allow the student to move from one screen to another.

When appropriate, the author connects display objects to sensors in the base simulation. The

connected display objects use the sensor values to display a number, message, or graphic to the

student.

25

Develop Instructional Guidance

Instructional guidance falls into two categories: Procedures and Instructor Feedback. Procedures

allow the author to guide the student through the diagnosis of a problem. The author may either

generate one general procedure to guide the students through all problems, or generate a procedure

specific to a given problem.

For each procedure, the author describes a series of steps that comprise the procedure. For each

step, the author must describe to the student how this step should be performed, and relate this step

to a student action (i.e., the author informs the student to view a sensor, test a part, or view a

simulation display to perform the step). MITT uses these relationships to determine if the student

has performed a step. For example, the author might determine that to perform step 3 of an engine

diagnosis procedure, the student must view the value of the oil pressure sensor. The author relates

this step to the oil pressure sensor. In MITr, the procedural expert uses these steps and

relationships to determine when the student should perform the step, and to advise the student how

to perform it.

The author can modify the Instructor Feedback component of MITT. Instructor feedback guides

the student and points out features of MITT that the student might have overlooked. For example,

the author might use instructor feedback to inform the student to request advice from the procedural

-expert (if the student has not used it during the current problem). Or, the author might also provide

feedback to students if they attempt to answer the problem without gaining adequate information.

Test and Modify System

Once authors feel that the base system is complete and ready to test, various tools are available in

MITr Writer to check the database and create the ITS files. The author uses the Advisor to check

for completeness of the tutor. The Advisor informs the author of missing components that were

overlooked. The author also uses the Consistency Check tool to check for inconsistent database

references. The Consistency Check will present errors and warnings to the author.

26

Oncethedatabasepasses the advisor tests and consistency checks, the author creates the tutor by

using the Write Training Files tool. When the author selects this tool, MITT Writer will translate

the database into the necessary ITS files.

The author then uses MITT to test the training files. In this mode, the author plays the part of the

student: running problems, getting help and advice, viewing gauges and displays, and testing

parts. In many cases, the author will notice errors and will note possible modifications to the tutor.

In these situations, the author returns to MITI" Writer, and makes the desired corrections.

4.2.2 Demonstration and Modification

After the author has created the base tutor, demonstration to outside parties (both instructors and

students) is necessary to obtain additional perspectives on the design, useability, and acceptability

of the tutor. In most cases, the initial demonstration of the system yields feedback that often points

to critical modifications that need to be made to the tutor. These modifications often center upon

the addition of functionality (e.g., more simulation screens, more parts and sensor points). When

developing a MITT tutor, the author should plan on conducting multiple demonstration, evaluation,

and modification cycles. As mentioned earlier, the time spent during these cycles is often equal to

the time spent developing the base tutor.

4.2.3 _fiv_

After developing the tutor, the MITT Writer author will deliver and distribute the new MITT

training system. The author must first create the supporting documentation for the system. At a

minimum, the author should create a student manual for the tutor. Template student manuals are

provided to the author in the MITT Writer User's Manual, and on the MITI" Writer distribution

diskettes. The author modifies these templates by adding domain-specific information (e.g.,

functional flow diagrams).

MITI" Writer supplies utility programs for 'bundling' the new MITT tutor. These tools aid the

author in copying all of the necessary ITS and graphics files to distribution diskettes. The author

delivers these diskettes, the MITI" delivery diskette, and the newly created manual to prospective

instructors and students. The author may choose to retain or distribute the authoring database

Utility programs also exist to aid the author in this process.

27

4.3 MITT Writer Internal Architecture

MITI" Writer's internal architecture is depicted in Figure 14. There are 7 major components of the

MI'IT Writer system: 1) the Display Manager, 2) the Database Manager, 3) Object Editors, 4) the

Consistency Checker, 5) the Help System, 6) the Advice System, and 7) MI'IT File Support.

Technical and implementation details for each of these components are discussed in this section.

Author

Manager

Main
Rou_ne

Advice Object Help
System Editors Check System

Database i Database Contents "l_ MrIT File

MI'IT
Writer ITS

and Help Files
Databases

Figure 14. MI'ITWriterlntemalArchitecture.

28

Display Manager

The Display Manager serves as an intermediary between the author and the MITr Writer system.

The Display Manager is responsible for maintaining information about the display state of MITr

Writer, opening and closing windows, and processing all author actions. The Display Manager

centralizes all interface management routines.

The Display Manager was implemented using a message-passing design. When the author makes

a gesture (i.e., moving the mouse, selecting a display item, pressing a key), the Display Manager

first determines if the gesture should be handled by the Display Manager or by external routines.

In the case of low-level gestures (e.g., moving the mouse), the Display Manager is capable of

processing this gesture alone. However, in the case of high-level gestures (e.g., the user closing a

window), the Display Manager must work with external routines to close the window, refresh the

screen, and activate the next window. To do this, the Display Manager passes messages to the

appropriate window(s), giving them instructions on what to do. (For example, in the case of

closing an editor, the Display Manager must inform the editor to first save the object being edited,

and to then close the editing form. The Display Manager then closes the window. The Display

Manager next informs background windows to refresh their portion of the screen. Finally, an

activate message is sent to the new top window, telling it that it is now active.)

To support the graphical interface, the Display Manager depends on two third-party graphical

libraries. Low-level graphics are support by Metagraphics' Metawindows. High-level window,

frame, and menu processing is supported by Ithaca Street Software's Menuet.

Because of the advanced functionality provided by the Display Manager, this component of MITT

Writer consumes the most computing resources, both in storage (on disk and in memory) and in

CPU cycles (for screen refreshes, message handling, etc.). The memory requirements for the

Display Manager, along with those for the object editors, strained the 640K memory limit on DOS.

As a result, the Display Manager was heavily optimized during the later stages of MITT Writer

development.

29

Object Editors

From the MITt Writer author's point of view, the object editors provide the majority of the

functionality provided by MITt Writer. These editors are the most heavily used components of the

system. The basic design for each editor is that of a frame. The author is presented with the frame

for an object, and is allowed to enter information into the structure. In the case of the Interactive

Display Editor, this frame concept was augmented with direct-manipulation to relieve the author

from having to understand the concepts of screen coordinates, and subsequently entering them into

the frame for a display object.

The object editors interact heavily with both the Display Manager and with the Database Manager.

The object editor is responsible for using the Display Manager to display object information on the

screen. The object editor is also responsible for validating data before using the Database Manager

to store the object in the database. Like the Display Manager, the object editors rely on the two

graphics libraries to manage frames and manipulate graphic images.

Database Manager

The Database Manager was designed to support the permanent storage of objects and their

relationships, and to maintain information about the state of the database in use. Components in

MITT Writer communicate with the Database Manager via objects and functions. Objects are

passed to and received from the Database Manager. Database Manager functions are available to

control and manipulate these objects in the database.

In addition to the database used by the author, the Database Manager also controls the System

Message database. The System Message database is used to hold all text necessary to support

M1TI" Writer. Example text includes error messages, help text, and advice presented by the

Advisor. These items are stored in an external database to conserve space in system memory.

MITt Writer components require both sequential and random access to the objects stored in the

database. For example, the consistency check tool performs a sequential search on the database,

looking at each object. Object editors, on the other hand, require random access based on an

identification code for the object (e.g., part number). The Database Manager was designed to

support both access methods.

30

The Database Manager was implemented using a B+tree as the file storage and indexing method.

A commercial library, CBTREE by Peacock Systems, was used to support the low-level B+tree

format. A network database structure was implemented on top of this format. This approach

required minimal memory overhead, though the required disk space is comparable to that of

commercial database management system (DBMS). Commercial DBMSs that support either

network or relational models were considered, but memory considerations dictated against these

alternatives.

Consistency Checking

The consistency checking tool scans the database and looks for references to missing objects. A

list of inconsistencies is produced at the end of this scan. There are two levels of inconsistencies

that can occur. 3_Y.ggIlia_ are inconsistencies that degrade the operation of the tutor, but do not

prove fatal. However, they should be corrected. For example, a simulation display may contain a

link object that references itself (i.e., when the student activates this link, the same display is

shown). MITt is able to handle these warning-level inconsistencies. E_ors, on the other hand,

arc inconsistencies that prohibit the M1Tr tutor from operating properly. For example, a functional

connection leading to a missing part will cause the MITT functional advisor to give improper

advice. MITr Writer tags these types of inconsistencies as errors.

In addition to maintaining a list of inconsistencies in the current database, the consistency checking

tool also provides additional details for each inconsistency. If authors wish to see additional

information regarding an inconsistency, they select that inconsistency and ask for more

information. The consistency check tool then provides additional details and offers advice on how

to correct the inconsistency.

Help System

As mentioned earlier, help text is stored in the System Message database. In addition to storing

individual help enlries, the database also stores the relationships between these help entries. These

relationships allow the author to browse through the help database, getting either a more detailed or

more general level of help for a given entry.

31

The help system contains both orientation help (e.g., how to use MI'TT Writer) and context-

specific help (e.g., how to enter data into the current object editor). Context-specific help is

supported by tagging each object editor with the identification code of the corresponding help

entry. When the author asks for help, the help system presents this entry. This same concept

could be extended to individual object components, though this was not done in MITt Writer.

To generate the MFIT Writer User's Manual, a program was written to print out the contents of the

help database. Given a starting entry, the program traversed the database structure, formatted, and

printed the manual to disk. Figures were then added to this file. Using this technique, future

changes to the help database can be easily reflected in the user's manual.

Advice System

MITI" Writer contains an embedded expert system that guides the author through the MITT Writer

authoring process. To develop this advisor, a prototype version was implemented using the

CLIPS expert system shell. The expert system is implemented as a backward-chaining system,

with the advisor attempting to assert that the database in question is complete. The MITT authoring

methodology and previous experiences in developing MITT tutors served to support the creation of

the initial rulebase. After review and modification of the CLIPS version, the system was converted

to a C-language based system. Again, memory constraints dictated this approach.

As the M1TI" Writer Advisor runs, it scans the appropriate sections of the database (as dictated by

the rules). The advisor also queries the author to gather information that cannot be inferred from

the database. When the advisor reaches a point at which it cannot continue, it offers the advice

associated with the expert system's current sub-goal. For example, if the advisor is trying to reach

the sub-goal of "All parts defined," then the fact that there are no parts in the system will generate

an advisor message. Similar to the help system, the advisor retrieves necessary messages from the

System Message database.

MITT File Support

The MITT File Support component of MITT Writer translates an author's database into a format

suitable for MITT. Translation is necessary because of the different file formats required by the

32

MITT tutor verses those required by MITT Writer. A database that has passed the consistency

check with no errors is eligible for translation.

To translate the database, the MFFF File Support component creates each file needed by MI'I_ on

an individual basis. The database is both randomly and sequentially read during translation. Disk

I/O requirements for the translator are extensive, contributing to excessive execution time for this

tool. Modifications were made to reduce the number of disk reads. In addition, to appease the

waiting author, an estimation of "percent complete" is displayed during translation.

4.4 Development of MITT Writer

The MITI" Writer Development project spanned 15 months, and focused on two major tasks. In

one task, the existing MITT Fuel Cell Tutor had to be modified to create a generic training system

shell that could be used with any domain. This involved examining the code for items that, if

changed, would allow the software to represent a new domain. Data files were defined for these

items. The MITI" software was then modified to read these files and present the prescribed

training.

The other major task involved designing and implementing the MITI" Writer system. From the

start, previous experiences in developing other DOS-based systems led us to believe that MITT

Writer would challenge the capabilities and resources of the target computing platform.

Subsequently, the technical approach to the design of MITI" Writer focused on maintaining desired

functionality while conserving computing resources. This became a critical issue when choosing a

development language, surveying third-party software, and developing code.

During development, the early versions of MITT Writer and MITI" were to support the

development of the Minuteman Missile Message Processing Tutor (described in Section 5.1). As

such, early emphasis in the project was directed at making MI'VI" as generic and file-driven as

possible to support this new domain. Early versions of MITI' Writer's file generation capabilities

were used to create these new files.

Early MITT Writer development focused on designing and implementing the Display Manager and

Database Manager. The majority of the Object Editors were added next. To complete the base

33

MITT Writer system, the Consistency Check tool and complete file translation capabilities were

added. Also during this period, enhancements were being incorporated into MITT, such as

optimizing the procedural expert, embellishing portions of the student interface, and implementing

support for additional display objects.

The base MITT Writer system was demonstrated in October, 1990. During this demonstration, a

sample database was modified, checked for consistency, and translated into MrFT ITS files. The

MITT software then used these files to present the modified training.

Between October, 1990 and February, 1991, the consistency check system was enhanced, and the

MITT Writer Advisor and Help System were incorporated. The MITr code continued to improve,

as support for user-defined objects and controls was implemented. In addition, significant

improvements were made in the student interface and simulation control functions.

The MITT Writer and MrIT systems were first used by outside parties during the MrlT Writer

Workshop (see Section 5.2), held in early February, 1991. This two-day workshop allowed the

participants to use MrFr Writer to modify an existing tutor and test their modifications using

MrlT. Suggested interface enhancements and programming changes were collected during the

workshop. These suggestions were prioritized and used to guide the final development.

During late February and March, 1991, the MITT and MrlT Writer systems were completed and

delivered in April, 1991. The two existing user's manuals were updated, combined, and delivered

during this period also.

34

5.0 MITT Writer Advanced Development

5.1 Minuteman Missile Message Processing Tutor

The first part of the Advanced Development project used the Microcomputer Intelligence for

Technical Training (M1Tr) paradigm to develop an Intelligent Tutoring System (ITS) for an

operational training unit of the Air Force Air Training Command (ATC). The domain was

identified as the Message Processing System for the Minuteman missile. Galaxy Scientific

personnel worked closely with personnel from Chanute Technical Training Center to develop the

system.

The Message Processing System for the Minuteman Missile involves data communications within a

network of launch facilities and launch control facilities. A message enters the site through a

hardened cable, is processed through various communications drawers, and is passed on to other

sites, as shown in Figure 15. The Missile student must ensure that this signal is valid upon

entering the site, is processed properly, and is muted to the next site.

HICS (479)

ESA 484)

Cable Stub I-BOX

Cable Cable

S _.

U

A1

A2

31

I

]
r

o G

g r
r o

a u

m P

m

I A7 I (403)

J

Figure 15. Missile Tutor Overview.

35

5.1.1 Fuel Cell vs. Message Processing

The original design of MITt (developed in cooperation with NASA) was shaped by the Electrical

Power System (Fuel Cell) on the Space Shuttle. The Fuel Cell had many properties that heavily

influenced MITI"s capability. This section will compare these properties with the properties

exhibited by the Message Processing System and explain how the differences were accommodated.

Gauges

The first difference involves how data is presented to the student in each system. The Fuel Cell

presents many video displays and gauges to the astronauts and flight controllers. To receive

information about the system, the astronaut only has to look at a display or gauge. In contrast, the

Message Processing System has very few instruments, but continuously presents data to the

student. The Missile student is forced to decide not only what equipment to look at, but also how

to look at the equipment.

For example, if astronauts suspect trouble with the Fuel Pump, they simply look at one of the

displays or gauges to check the value. In contrast, if a Missile student suspects trouble with a

drawer, they must remove a connector and attach a piece of monitoring equipment (a headphone or

volt meter). This demands a much more active role on the part of the Missile student, which in

• turn creates greater software requirements.

Data Entry Support

This more active role requires that the Missile student not only choose the component to inspect,

but it also requires that the student choose the monitoring equipment and how and where to attach

it. As a result, the simple Fuel Cell gauge interface had to evolve to support this more dynamic

data entry procedure.

An example scenario will help to explain the data entry procedure. The Missile student monitors

equipment in several different ways. Assume that the system contains only four pieces of

equipment: Drawer A, Drawer B, Drawer C, Drawer D. Also assume that only four tests are

available to monitor the equipment: Test 1, Test 2, Test 3, and Test 4. A realistic scenario would

allow the student to perform each test on each drawer. This requires support of 16 different tests

36

for this small example. If each test required that the student identify two different pins on each

drawer for each test, the number of actions that must be supported would grow exponentially.

If a programmer were modifying the system to support this, the programmer could use very

specific statements, similar to the following:

"If Test=l, Drawer=C and Pins=2,5 then display a data value of +12 Volts".

However, to support this kind of logic in an authoring system requires the development of a

scripting language. The authoring system for MI'I'r does not support scripting, so another

solution had to be used.

State Machine over Scripting Language

The solution treats the system as a state machine. Each screen that the student sees represents a

certain state. For example, the fact that the student sees Screen 2.3, implies that the student has

already seen Screens 2.1 and 2.2. This state machine eliminates the need to keep track of global

variable such as Test, Drawer and Pins.

The basic MITT "Gauges" interface could support this more dynamic data entry procedure, but at a

cost. This cost was on memory and data size. As mentioned before, each state of the system must

be represented by the system. Since the combinations of equipment, tests and pins is rather large,

the amount of data required to represent this is also large. However, this approach agreed with the

MITT Writer Authoring System design.

Procedures

The level of detail required to represent procedures (not procedural advice) differs between the Fuel

Cell and the Missile Tutors. In the Fuel Cell, the astronaut only needed to know which procedure

needed to be performed. The details of how to perform the given procedure were not important.

The astronaut merely chose an item from a list of procedures.

In contrast, the Missile student was concerned with identification of the correct procedure, as well

as exactly how to perform the procedure. To do this, the Missile student was required to select the

procedure to perform, the piece of equipment on which to perform the procedure, and the pins to

37

which to connectthetestdevice. The last of these steps is shown in Figure 16. Therefore, as

previously stated, a more active role was required of the Missile student than of the astronaut.

FI-

J24

Choose headphones to listen for tone ...

Help F7 - Back Up One (F9 - Back to StartS])

InterfaceSuggestions

Figure 16. Missile Tutor Display.

As suggested by the intensive nature of data entry, the data entry portion of the Missile system

(Procedures/Indications selection from the Options Menu) becomes the primary focus of the

system. This emphasizes the procedures and de-emphasizes the use of the functional flow of the

system. ATC personnel suggested that the primary screen be the Procedures/Indications screen

and that the other functions that exist on the current options menu be included in a "help" key. An

answer button could also be added on the main screen. The "help" function would then list

Functional advice, Procedural advice, remaining parts, and information and description functions.

While this addition seems to make sense for this domain, it is questionable whether it would make

sense for all domains. Also the de-emphasis on the functional flow is not desirable. However, the

MYIT tutor was enhanced to appear less text-based and more graphical.

38

5.1.2 M1Tr Writer and MITT

As mentioned earlier, the Missile system was designed with MITT Writer in mind. Every effort

was made to guide the Missile design to be compatible with MITT Writer. Occasionally, the

Missile system development uncovered some MITT Writer design deficiencies.

The Missile system was developed by programs to generate the files that MITI" reads. Even

though MFFr Writer was not mature enough to support the full development of the Missile system,

the Missile system required only the following three custom software changes of MITT:

removed the sensors from the feasible set because sensors are only used as data

sources, not components for the Missile System

suppressed some facts from being asserted in CLIPS to conserve memory

changed the options menu from "Gauges G" to "Procedures/Indications N"

The Missile domain was a very challenging one. It required extensive analysis and planning to

incorporate the Missile system into the existing design. ATC personnel also pointed out several

areas where the design of the MITT interface could be changed to make more sense in the new

Procedures/Indications context. While certain limitations were identified, the Missile Tutor helped

demonstrate that the MITT design was robust enough to support another technical training domain.

5.2 MITT Writer Workshop

The MITr Writer workshop was held on February 7 & 8, 1991 in Atlanta, GA (Browning, et al.,

1991). The workshop spanned two days for a period of approximately 14 hours. Eighteen people

from the Air Force, Navy, and NASA attended the workshop. The workshop was supported by 5

Galaxy Scientific personnel.

The workshop had the following goals:

• to provide an initial test of MrFr Writer usability

• to teach participants to use the authoring system

• to prompt ideas for subsequent MITt Writer workshops

39

5.2.1 Workshop Format

The workshop consisted of both formal presentations and extensive laboratory exercises. The

formal presentations addressed a variety of concepts, including functional flow, problems, faults,

alarms, display elements, and procedural editors. After each formal presentation, the groups were

given directed exercises to complete. The participants were divided into small groups (3

people/group) for the laboratory exercises.

The demonstration system for the workshop was an Automobile Engine Tutor. The participants

were given a tutor with portions omitted. The exercises were designed to aid users in completing

the tutor. Also, each group was encouraged to customize their Automobile tutor.

Upon completion of the workshop, pardcipants were asked to evaluate M1TT Writer by completing

a four-page questionnaire. The questionnaire covered three major topic areas: the workshop,

M1TT, and MITT Writer. The following section reports the results of the evaluation.

5.2.2 Evaluation Results

Fourteen evaluation forms were returned at the end of the workshop. Respondents were asked to

rate certain factors, using a 5-point scale: Excellent (5) to Unacceptable (1). The results from the

major categories (Workshop, M1TF, and MITr Writer) are summarized in Figure 17. Each of

categories received very high marks on the five-point scale. These average ratings are discussed

below.

Without exception, the questionnaire respondents found the MITT training system easy to use (see

Figure 18). When assistance or explanation was needed, the on-line help was available and useful.

Respondents were very satisfied with the graphical appeal, clarity, and intuitive nature of MITT.

Respondents also liked MITT Writer (see Figure 19). The system has sufficient on-line help and

advice to support the powerful authoring environment. Correspondingly, the highest rating on the

evaluation was 4.8/5.0 for the MITI" Writer on-line help.

40

5.0

4.5

4.0

3.

3.0

2.

2.0

1.

1.0

MITr Training MI'IT
System Writer

Workshop

Figure 17. Average Ratings on Major Categories.

4.0

3.

3.0

2.

2.0

1

1.0
Usability On-line On-fine User's Ease of Accepqability

Help Advice Manual Use

Figure 18. MITT Training System Scores - Overall.

41

Usability On-line On-line Useds

Help Advice Manual

Figure 19.

Ease of Acceptability ITS Resonabl¢ Authoring

Use Authoring Authoring Process

Capability _oc.ess Organiza_on

MrIT Writer Ratings - Overall.

Overall the workshop was a success (see Figure 20). The workshop met the expectations of all

respondents. However, a majority of the respondents were not completely satisfied with the length

of the workshop. Two days did not seem to be long enough. As a result, this category received

the lowest rating on the questionnaire - 3.9/5.0. Even though this falls in the "Good" range, it is

noteworthy when planning the next series of authoring system workshops.

5

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Length Amount Clarity of Meeting
of Info Presentations Logistics

Covered

Figure 20. Workshop Ratings.

42

6.0 Summary and Areas for Future Development

6.1 Summary

The MITT and MITT Writer systems are a reasonable alternative for simulation-based diagnostic

training. MITT tutors operate on computer systems that are already installed in training

installations. MITT tutors provide challenging, simulation-based problems to students. MITT

delivers this training to students using ITS technology. MITT presents problems, monitors student

performance, compares student actions to expert actions, and presents suitable feedback to the

student.

MITT Writer provides economical development and maintenance costs for these training systems.

MITT Writer supports instructors and subject matter experts, rather than programmers, in

developing MITT tutors. MrIT Writer provides enhanced ITS authoring capabilities and allows

the author to rapidly develop and maintain MITT tutors. The MITr Writer authoring environment

guides technical personnel to organize their knowledge in a format that is aligned with the MITT

architecture, and based on the workshop results, is relatively easy to use.

Overall the workshop was a success. The workshop met the expectations of all respondents.

Without exception, the evaluation respondents found the MITT training system easy to use.

Respondents were very satisfied with the graphical appeal, clarity, and intuitive nature of MITT.

The respondents indicated an acceptance of MITT Writer's ITS authoring capability. The

respondents found that MITT Writer has sufficient on-line help and advice to support the powerful

authoring environment. They also indicated that the MITT Writer authoring process was both

reasonable and properly organized.

The Missile domain required extensive analysis and planning to incoqxa'ate the Missile system into

the existing MITT design. ATC personnel pointed out areas where the design of the MITT

interface could be changed to accommodate the domain's emphasis on procedures. While certain

limitations were identified, the Missile Tutor demonstrated that the MITT design is robust enough

to support a variety of technical training domains.

43

6.2 Areas for Future Development

MITT and MITI" Writer present a promising approach to the development of technicnl training. In

the near future, enhancements can be made that will in_ the effectiveness of both the authoring

environment and the training it supports. In addition, work can be conducted that will increase the

use and acceptability of the MITI' training approach.

Presently, another MITI" Writer workshop is being planned to teach the use and application of

MITT Writer for ATC. Additional workshops would aid in the transfer of the training technology

to the User Commands. Both MITT and MITT Writer are being used to develop a new MITT tutor

for Space Command. Based on this new MI'IT tutor, or other current MITT tutor projects under

development at Armstrong Laboratory Human Resources Directorate Training Systems Division, a

formal evaluation of training effectiveness and cost effectiveness could be conducted.

The current upgrade in the standard Air Force computing environment offers new opportunities to

increase the functionality of both MITT Writer and MITT. From a training technology point of

view, enhancements in student modeling and instructor guidance can be made to include additional

diagnostic techniques and new uses for the student model (e.g., intelligent problem generation,

increased explanations by the procedural expert). The simulation component of MYIT could also

be enhanced by creating deeper simulation models, intelligent on-line functional flow diagrams,

and providing support for multiple component failures.

On the authoring side, additional objects (e.g., audio/video for information displays) and object

editors (e.g., interactive functional flow editor) can be added. The capabilities of the procedure

editor can be enhanced to support more robust procedures (e.g., include conditional branches).

The MITT and MI'IT Writer environments can be partially or wholly integrated to reduce the time

necessary to test changes made to the training system. For example, "preview" tools can be added

to allow the author to try out new procedures, view screens in the manner that students would view

them, or test functional advice on newly modified functional flow networks.

Networking support can be added to allow for connectivity between multiple authors of a training

system, or to allow connections between instructor and student. An instructional station

44

componentcanbe added to allow instructors to monitor a student's problem solving session,

subsequently offering advice or manipulating the simulation.

MITT and MITT Writer were developed in the C programming language. As the tools prepare for

transition into the Air Force training community, support for Ada versions may be required. Many

of the suggested embellishments could be made during this translation process.

45

References

Browning, E.J., Johnson, W.B., Wiederholt, B.J., Norton, J.E., and Morgan, C.S. (1991).

Microcomputer Intelligence for Technical Training: Workshop Report and Software Completion

Plan. Atlanta, GA: Galaxy Scientific Corporation.

Johnson, W.B. (1981). Computer simulations for fault diagnosis training: An empirical study of

learning from simulation to live system performance. (Doctoral Dissertation, University of Illinois,

1981), (Dissertation Abstracts International, 41(11) 4625-A. (University Microfilms No.

8108555).

Johnson, W.B. (1987). Development and evaluation of simulation-oriented computer-based

instruction for diagnostic training. In W.B. Rouse (Ed.), Advances in man-mactu'ne systems

research: Vol. 3. Greenwich, CT: JAI Press, 99-125.

Johnson, W.B. (1988a). Developing expert system knowledge bases for technical training. In

L.D. Massey, J. Psotka, and S.A. Mutter (Eds.), Intelligent Tutoring Systems: Lessons Learned

(pp 83-92). Hillsdale, N J: Lawrence Erlbaum Associates, Inc.

"Johnson, W.B. (1988b). Intelligent tutoring systems: If they are such good ideas, why aren't there

more of them. Proceedings of the lOth Annual Interservice/lndustry Training Systems Conference,

Orlando, FL: The Industrial Security Association, 399-406.

Johnson, W.B. and Fath,J.L.(1983).Design and initialevaluationof a mixed-fidelitycourseware

formaintenance training.Proceedings of the27th Annual Meeting of the Human Factors Society

(pp 1017-1021).Norfolk,VA: Human FactorsSociety

Johnson, W.B. and Fath, J.L. (1984). Implementation of a mixed-fidelity approach to

maintenance training (TR-661). Alexandria, VA: U.S. Army Research Institute for the Behavioral

and Social Sciences.

46

Johnson, W.B., Maddox, M.E., Rouse, W.B., & Kiel, G.C. (1985). Diagnostic training for

nuclear power plant personnel, volume 1: Courseware development (EPRI NP-3829). Palo Alto,

CA: Electric Power Research Institute.

Johnson, W.B., Neste, L.O., and Duncan, P.C. (1989). An authoring environment for intelligent

tutoring systems. Proceedings of the 1989 IEEE International Conference on Systems, Man, and

Cybernetics. Boston, MA, 761-765.

Johnson, W.B., Norton, J.E., and Duncan, P.E., and Hunt, R.M. (1988). Development and

demonstration of an intelligent tutoring system for technical training (MFIT) (AFHRL-TP-88-8).

Brooks AFB, TX: The Air Force Human Resources Laboratory.

Johnson, W.B., and Rouse, W.B. (1981). Analysis and classification of human errors in

troubleshooting live aircraft power plants. IEEE Transactions on Systems, Man, and Cybernetics,

SMC-12,(3),389-393.

Johnson, W.B., Wiederholt, B.J., and Maddox, M.E. (1986). Diagnostic training demonstration:

Instructor and student manuals and sample diskettes (EPRI NP-4493P). Palo Alto, CA: Electric

Power Research Institute.

Maddox, M.E., Johnson, W.B., & Frey, P.R. (1986). Diagnostic training for nuclear power plant

personnel, volume 2: Implementation and evaluation (EPRI NP-3829-II). Palo Alto, CA: Electric

Power Research Institute.

Massey, L.D., Psotka, J., Mutter, S.A. (Eds.) (1988), Intelligent Tutoring Systems:Lessons

Learned. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Neste, L.O. (1989). Overcoming microcomputer constraints in the development of an intelligent

tutoring system. Fall Symposium on Computing Research and Development. Houston, TX:

University of Houston Clear Lake, Research Institute for the Computing and Information

Sciences.

47

Norton, J.E., Wiederholt, B.J., and Johnson, W.B. (1991). Microcomputer lntelligence for

Technical Training (MITT): The Evolution of an Intelligent Tutoring System (1991). Atlanta, GA:

Galaxy Scientific Corporation.

Poison, M.C., and Richardson, J.J. (Eds.) (1988). Foundations oflntelligent Tutoring Systems.

Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Rouse, W.B. (1979). Problem solving performance of first semester maintenance trainees in two

fault diagnostic tasks. Human Factors, 21(5), 611-618.

Rouse, W.B., and Hunt, R.M. (1984). Human problem solving in fault diagnosis tasks. In W.B.

Rouse (Ed.), Advances in Man-Machine Systems Research: Vol 1. Greenwich, CT: JAI Press,

195-222.

Wiederholt, B.J. (1991). MITT Writer User's Manual. Atlanta,

Corporation.

GA: Galaxy Scientific

48

